Debate sobre la gobernanza internacional de la IA: ¿qué se discute?

Qué se discute en la gobernanza internacional de la IA

La gobernanza internacional de la inteligencia artificial (IA) reúne a gobiernos, organizaciones internacionales, empresas, academia y sociedad civil para definir reglas, normas y mecanismos que orienten el desarrollo y uso de estas tecnologías. Los debates combinan cuestiones técnicas, éticas, económicas, de seguridad y geopolíticas. A continuación se presentan los temas centrales, ejemplos concretos y mecanismos que se proponen o aplican en distintos foros.

Riesgos para la seguridad y la integridad

La preocupación por la seguridad incluye fallos accidentales, usos maliciosos y consecuencias estratégicas a gran escala. Entre los puntos clave están:

  • Riesgos sistémicos: posibilidad de que modelos muy potentes actúen de forma imprevisible o escapen a controles, afectando infraestructuras críticas.
  • Uso dual y militarización: aplicación de IA en armas, vigilancia y ciberataques. En foros de la ONU y del Convenio sobre Ciertas Armas Convencionales se discute cómo regular o prohibir sistemas de armas completamente autónomas.
  • Reducción del riesgo por diseño: prácticas como pruebas adversarias, auditorías de seguridad, y exigencia de evaluaciones de riesgo antes del despliegue.

Ejemplo: en el ámbito multilateral se discute la creación de normas vinculantes sobre SALA (sistemas de armas letales autónomas) y procedimientos de verificación para evitar proliferación.

Derechos humanos, privacidad y vigilancia

La IA genera desafíos para los derechos civiles y las libertades públicas:

  • Reconocimiento facial y vigilancia masiva: posible debilitamiento de la privacidad y aparición de sesgos. Diversos países y la Unión Europea analizan imponer límites o pausas a su implementación a gran escala.
  • Protección de datos: gestión responsable de grandes conjuntos de información para entrenar modelos, junto con aspectos de consentimiento, reducción de datos y procesos de anonimización.
  • Libertad de expresión e información: sistemas de moderación automatizada, creación de contenido engañoso y deepfakes que pueden influir en dinámicas democráticas.

Caso: campañas de desinformación potenciadas por generación automática de contenido han llevado a debates en foros electorales y a propuestas para obligaciones de transparencia sobre el uso de sistemas generativos en campañas.

Equidad, no discriminación y inclusión

Los modelos pueden reflejar o incluso intensificar sesgos existentes cuando los datos de entrenamiento no resultan suficientemente representativos:

  • Discriminación algorítmica: revisiones independientes, indicadores de equidad y procedimientos de corrección.
  • Acceso y desigualdad global: posibilidad de que la capacidad tecnológica se concentre en unas pocas naciones o corporaciones; urgencia de impulsar la transferencia tecnológica y la cooperación para fortalecer el desarrollo local.

Dato y ejemplo: estudios han mostrado que modelos entrenados con datos sesgados dan peores resultados para grupos subrepresentados; por ello iniciativas como evaluaciones de impacto social y requisitos de testeo público son cada vez más solicitadas.

Transparencia, explicabilidad y trazabilidad

Los reguladores analizan cómo asegurar que los sistemas avanzados resulten entendibles y susceptibles de auditoría:

  • Obligaciones de transparencia: comunicar cuando una resolución automatizada impacta a una persona, divulgar documentación técnica (fichas del modelo, fuentes de datos) y ofrecer vías de reclamación.
  • Explicabilidad: proporcionar niveles adecuados de detalle técnico adaptados a distintos tipos de audiencia (usuario final, autoridad reguladora, instancia judicial).
  • Trazabilidad y registro: conservar registros de entrenamiento y operación que permitan realizar auditorías en el futuro.

Ejemplo: la propuesta legislativa de la Unión Europea clasifica sistemas según riesgo y exige documentación detallada para los considerados de alto riesgo.

Responsabilidad jurídica y cumplimiento

La cuestión de cómo asignar la responsabilidad por daños ocasionados por sistemas de IA se ha convertido en un punto clave:

  • Regímenes de responsabilidad: se discute si debe recaer en el desarrollador, el proveedor, el integrador o el usuario final.
  • Certificación y conformidad: incluyen esquemas de certificación previa, evaluaciones independientes y posibles sanciones en caso de incumplimiento.
  • Reparación a las víctimas: se plantean vías ágiles para ofrecer compensación y soluciones de remediación.

Datos normativos: la propuesta de la UE prevé sanciones ajustadas a la gravedad, incluidas multas de gran envergadura ante incumplimientos en sistemas clasificados como de alto riesgo.

Propiedad intelectual y acceso a datos

El uso de contenidos para entrenar modelos ha generado tensiones entre creación, copia y aprendizaje automático:

  • Derechos de autor y recopilación de datos: litigios y solicitudes de claridad sobre si el entrenamiento constituye uso legítimo o requiere licencia.
  • Modelos y datos como bienes estratégicos: debates sobre si imponer licencias obligatorias, compartir modelos en repositorios públicos o restringir exportaciones.

Varios litigios recientes surgidos en distintos países han puesto en entredicho la legalidad del entrenamiento de modelos con material protegido, lo que está acelerando ajustes normativos y promoviendo acuerdos entre las partes involucradas.

Economía, empleo y competencia

La IA es capaz de remodelar mercados, empleos y la organización empresarial:

  • Sustitución y creación de empleo: diversas investigaciones revelan impactos mixtos: ciertas labores se automatizan mientras otras reciben apoyo tecnológico, por lo que resultan esenciales las políticas activas de capacitación.
  • Concentración de mercado: existe la posibilidad de que surjan monopolios debido al dominio de datos y de modelos centrales, lo que impulsa el debate sobre competencia e interoperabilidad.
  • Impuestos y redistribución: se analizan esquemas de tributación sobre ganancias ligadas a la automatización, así como mecanismos para sostener la protección social y los programas de recualificación.
  • Sustentabilidad del entorno

    El impacto energético y material de entrenar y operar modelos es objeto de regulación y buenas prácticas:

    • Huella de carbono: entrenamiento de modelos muy grandes puede consumir energía significativa; indicadores y límites son discutidos.
    • Optimización y transparencia energética: etiquetas de eficiencia, reporte de consumo y migración a infraestructuras con energía renovable.

    Estudio relevante: investigaciones han mostrado que el entrenamiento intensivo de modelos de lenguaje puede generar emisiones equivalentes a decenas o cientos de toneladas de CO2 si no se optimiza el proceso.

    Regulaciones técnicas, estándares y procesos de interoperabilidad

    La adopción de estándares promueve mayor seguridad, confianza y dinamiza el comercio:

    • Marco de normalización: elaboración de estándares técnicos internacionales que abordan la solidez, las interfaces y los formatos de datos.
    • Interoperabilidad: asegurar que distintos sistemas puedan colaborar manteniendo niveles adecuados de seguridad y privacidad.
    • Rol de organismos internacionales: OCDE, UNESCO, ONU, ISO y diversos foros regionales intervienen en la coordinación y armonización regulatoria.

    Ejemplo: la OCDE elaboró una serie de principios sobre la IA que se han convertido en una guía para numerosas políticas públicas.

    Procesos de verificación, observancia y coordinación multilateral

    Sin mecanismos de verificación sólidos, las normas quedan como simples declaraciones:

    • Inspecciones y auditorías internacionales: se plantean observatorios multilaterales que monitoreen el cumplimiento y difundan información técnica.
    • Mecanismos de cooperación técnica: apoyo para naciones con menor capacidad, intercambio de buenas prácticas y recursos destinados a reforzar la gobernanza.
    • Sanciones y medidas comerciales: debate sobre restricciones a la exportación de tecnologías delicadas y acciones diplomáticas frente a eventuales incumplimientos.

    Caso: las limitaciones impuestas al comercio de semiconductores ilustran cómo la tecnología de IA puede transformarse en un asunto de política comercial y de seguridad.

    Instrumentos normativos y recursos aplicados

    Las respuestas normativas varían entre instrumentos vinculantes y enfoques flexibles:

    • Regulación vinculante: leyes nacionales y regionales que imponen obligaciones y sanciones (ejemplo: propuesta de ley en la Unión Europea).
    • Autorregulación y códigos de conducta: guías emitidas por empresas y asociaciones que pueden ser más ágiles pero menos exigentes.
    • Herramientas de cumplimiento: evaluaciones de impacto, auditorías independientes, etiquetas de conformidad, y entornos experimentales regulatorios para probar políticas.

    Gobernanza democrática y participación de la ciudadanía

    La validez de las normas se sustenta en una participación amplia:

    • Procesos participativos: audiencias públicas, órganos éticos y la presencia de comunidades involucradas.
    • Educación y alfabetización digital: con el fin de que la población comprenda los riesgos y se involucre en la toma de decisiones.

    Ejemplo: en distintos países, varias iniciativas de consulta ciudadana han incidido en las exigencias de transparencia y en las restricciones aplicadas al empleo del reconocimiento facial.

    Sobresalientes tensiones geopolíticas

    La búsqueda por liderar la IA conlleva riesgos de fragmentación:

    • Competencia tecnológica: estrategias de inversión, apoyos estatales y pactos que podrían originar ecosistemas tecnológicos separados.
    • Normas divergentes: marcos regulatorios distintos (desde posturas más estrictas hasta otras más flexibles) influyen en el comercio y en la colaboración global.

    Resultado: la gobernanza global intenta conciliar la armonización regulatoria con la autonomía tecnológica.

    Iniciativas y menciones multilaterales

    Existen varias iniciativas que sirven de marco de referencia:

    • Principios de la OCDE: lineamientos orientadores sobre la IA confiable.
    • Recomendación de la UNESCO: marco ético para orientar políticas nacionales.
    • Propuestas regionales: la Unión Europea impulsa un reglamento centrado en riesgo y obligaciones de transparencia y seguridad.

    Estas iniciativas muestran la combinación de normas no vinculantes y propuestas legislativas concretas que avanzan en distintos ritmos.

    La gobernanza internacional de la IA es un entramado dinámico que debe integrar exigencias técnicas, valores democráticos y realidades geopolíticas. Las soluciones efectivas requieren marcos normativos claros, capacidades de verificación creíbles y mecanismos

Por Lisandro Lopez

Más como esto